3 resultados para Phage-displayed libraries

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support the development and analysis of engineering designs at the embodiment stage, designers work iteratively with representations of those designs as they consider the function and form of their constituent parts. Detailed descriptions of "what a machine does" usually include flows of forces and active principles within the technical system, and their localization within parts and across the interfaces between them. This means that a representation should assist a designer in considering form and function at the same time and at different levels of abstraction. This paper describes a design modelling approach that enables designers to break down a system architecture into its subsystems and parts, while assigning functions and flows to parts and the interfaces between them. In turn, this may reveal further requirements to fulfil functions in order to complete the design. The approach is implemented in a software tool which provides a uniform, computable language allowing the user to describe functions and flows as they are iteratively discovered, created and embodied. A database of parts allows the user to search for existing design solutions. The approach is illustrated through an example: modelling the complex mechanisms within a humanoid robot. Copyright © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled structures capable of mediating electron transfer are an attractive scientific and technological goal. Therefore, systematic variants of SH3-Cytochrome b(562) fusion proteins were designed to make amyloid fibers displaying heme-b(562) electron transfer complexes. TEM and AFM data show that fiber morphology responds systematically to placement of b(562) within the fusion proteins. UV-vis spectroscopy shows that, for the fusion proteins under test, only half the fiber-borne b(562) binds heme with high affinity. Cofactor binding also improves the AFM imaging properties and changes the fiber morphology through changes in cytochrome conformation. Systematic observations and measurements of fiber geometry suggest that longitudinal registry of subfilaments within the fiber, mediated by the interaction and conformation of the displayed proteins and their interaction with surfaces, gives rise to the observed morphologies, including defects and kinks. Of most interest is the role of small molecule modulation of fiber structure and mechanical stability. A minimum complexity model is proposed to capture and explain the fiber morphology in the light of these results. Understanding the complex interplay between these factors will enable a fiber design that supports longitudinal electron transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.